Return to site

Sketchode 2 0 1

broken image


  1. Sketchode 2 0 100000
  2. Sketchode 2 0 18
  3. Sketchode 2 0 15
  4. Sketchode 2 0 1 Sezonas

Brightheart 2 Firefly Action Brigade 2020 1080p WEB-DL DD5 1 H 264-EVO 18 September 2020 Views: 0 Author: admin 18 September 2020 Views: 0 Brightheart 2 Firefly Action Brigade 2020 1080p WEB-DL DD5 1 H 264-EVO. Sketchode 2 for Mac 2.0.1 介绍 Sketchode-一个设计项目创建的图形表示,在素描中,可以帮助您优化的移动和桌面应用的开发。 工程和艺术方法的差异使得前端开发人员和设计人员使用各种工具来优化他们的移动应用程序的创建和维护过程。. Sketchpad: Multi-Touch, Multi-User, Non-Destructive drawing application written in HTML5.

What's fixed

Sketchode 2 0 15
  • Fixes a bug that caused rendering artefacts to appear when you zoomed in or out on certain Artboards.
  • Fixes a crash that would sometimes occur when you opened the Insert Window by pressing c on your keyboard.
  • Fixes a bug that meant changes you made to Hex and RGBA values did not always save when you created or edited Color Variables.
  • Fixes a crash that could occur in macOS Big Sur if there were expanded groups in your document's Layer List.
  • Fixes a bug that stopped the Insert Window from refreshing after you edited any properties for Styles, Symbols, or Color Variables.
  • Fixes a bug that caused the main document window to disappear if you made it full-screen after opening the Insert Window.
  • Fixes a bug that could cause some images to appear with inverted colors.
  • Fixes a bug that made the Return to Instance button disappear after you opened the Components View.
  • Fixes a crash that could occur if you were working with some greyscale images.
  • Fixes a crash that could occur if you duplicated a Color Variable in the Components View.
  • Fixes a bug where some single-letter shortcuts would not work for certain macOS keyboard input languages.
  • Fixes a bug that caused colors in text layers to change if you used Sketch with some external displays.
Show Mobile NoticeShow All NotesHide All Notes
You appear to be on a device with a 'narrow' screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.

Section 3-1 : Tangent Planes and Linear Approximations

Earlier we saw how the two partial derivatives ({f_x}) and ({f_y}) can be thought of as the slopes of traces. We want to extend this idea out a little in this section. The graph of a function (z = fleft( {x,y} right)) is a surface in ({mathbb{R}^3})(three dimensional space) and so we can now start thinking of the plane that is 'tangent' to the surface as a point. Game pokemon di laptop.

Let's start out with a point (left( {{x_0},{y_0}} right)) and let's let ({C_1}) represent the trace to (fleft( {x,y} right)) for the plane (y = {y_0}) (i.e. allowing (x) to vary with (y) held fixed) and we'll let ({C_2}) represent the trace to (fleft( {x,y} right)) for the plane (x = {x_0}) (i.e. allowing (y) to vary with (x) held fixed). Now, we know that ({f_x}left( {{x_0},{y_0}} right)) is the slope of the tangent line to the trace ({C_1}) and ({f_y}left( {{x_0},{y_0}} right)) is the slope of the tangent line to the trace ({C_2}). So, let ({L_1}) be the tangent line to the trace ({C_1}) and let ({L_2}) be the tangent line to the trace ({C_2}).

The tangent plane will then be the plane that contains the two lines ({L_1}) and ({L_2}). Geometrically this plane will serve the same purpose that a tangent line did in Calculus I. A tangent line to a curve was a line that just touched the curve at that point and was 'parallel' to the curve at the point in question. Well tangent planes to a surface are planes that just touch the surface at the point and are 'parallel' to the surface at the point. Note that this gives us a point that is on the plane. Since the tangent plane and the surface touch at (left( {{x_0},{y_0}} right)) the following point will be on both the surface and the plane.

[left( {{x_0},{y_0},{z_0}} right) = left( {{x_0},{y_0},fleft( {{x_0},{y_0}} right)} right)]

What we need to do now is determine the equation of the tangent plane. We know that the general equation of a plane is given by,

[aleft( {x - {x_0}} right) + bleft( {y - {y_0}} right) + cleft( {z - {z_0}} right) = 0]

where (left( {{x_0},{y_0},{z_0}} right)) is a point that is on the plane, which we have. Let's rewrite this a little. We'll move the (x) terms and (y) terms to the other side and divide both sides by (c). Doing this gives,

[z - {z_0} = - frac{a}{c}left( {x - {x_0}} right) - frac{b}{c}left( {y - {y_0}} right)]

Now, let's rename the constants to simplify up the notation a little. Let's rename them as follows,

[A = - frac{a}{c}hspace{0.25in}B = - frac{b}{c}]

With this renaming the equation of the tangent plane becomes,

[z - {z_0} = Aleft( {x - {x_0}} right) + Bleft( {y - {y_0}} right)]

and we need to determine values for (A) and (B).

Let's first think about what happens if we hold (y) fixed, i.e. if we assume that (y = {y_0}). In this case the equation of the tangent plane becomes,

[z - {z_0} = Aleft( {x - {x_0}} right)]

This is the equation of a line and this line must be tangent to the surface at (left( {{x_0},{y_0}} right)) (since it's part of the tangent plane). In addition, this line assumes that (y = {y_0}) (i.e. fixed) and (A) is the slope of this line. But if we think about it this is exactly what the tangent to ({C_1}) is, a line tangent to the surface at (left( {{x_0},{y_0}} right)) assuming that (y = {y_0}). In other words,

[z - {z_0} = Aleft( {x - {x_0}} right)]

is the equation for ({L_1}) and we know that the slope of ({L_1}) is given by ({f_x}left( {{x_0},{y_0}} right)). Therefore, we have the following,

[A = {f_x}left( {{x_0},{y_0}} right)]

If we hold (x) fixed at (x = {x_0}) the equation of the tangent plane becomes,

[z - {z_0} = Bleft( {y - {y_0}} right)]

However, by a similar argument to the one above we can see that this is nothing more than the equation for ({L_2}) and that it's slope is (B) or ({f_y}left( {{x_0},{y_0}} right)). So,

[B = {f_y}left( {{x_0},{y_0}} right)]

The equation of the tangent plane to the surface given by (z = fleft( {x,y} right)) at (left( {{x_0},{y_0}} right)) is then,

[z - {z_0} = {f_x}left( {{x_0},{y_0}} right)left( {x - {x_0}} right) + {f_y}left( {{x_0},{y_0}} right)left( {y - {y_0}} right)]

Also, if we use the fact that ({z_0} = fleft( {{x_0},{y_0}} right)) we can rewrite the equation of the tangent plane as,

[begin{align*}z - fleft( {{x_0},{y_0}} right) & = {f_x}left( {{x_0},{y_0}} right)left( {x - {x_0}} right) + {f_y}left( {{x_0},{y_0}} right)left( {y - {y_0}} right) z & = fleft( {{x_0},{y_0}} right) + {f_x}left( {{x_0},{y_0}} right)left( {x - {x_0}} right) + {f_y}left( {{x_0},{y_0}} right)left( {y - {y_0}} right)end{align*}]

We will see an easier derivation of this formula (actually a more general formula) in the next section so if you didn't quite follow this argument hold off until then to see a better derivation.

Example 1

Sketchode 2 0 100000

Find the equation of the tangent plane to (z = ln left( {2x + y} right)) at (left( { - 1,3} right)). Show Solution

There really isn't too much to do here other than taking a couple of derivatives and doing some quick evaluations. Icarefone 5 4 0 8 x 2. Can macbook pro 2011 run catalina.

[begin{align*}fleft( {x,y} right) & = ln left( {2x + y} right)hspace{0.25in}& {z_0}& = fleft( { - 1,3} right) = ln left( 1 right) = 0 {f_x}left( {x,y} right) & = frac{2}{{2x + y}}hspace{0.25in} &{f_x}left( { - 1,3} right) & = 2 {f_y}left( {x,y} right) & = frac{1}{{2x + y}}hspace{0.25in} & {f_y}left( { - 1,3} right) & = 1end{align*}]

The equation of the plane is then,

[begin{align*}z - 0 & = 2left( {x + 1} right) + left( 1 right)left( {y - 3} right) z & = 2x + y - 1end{align*}]

One nice use of tangent planes is they give us a way to approximate a surface near a point. As long as we are near to the point (left( {{x_0},{y_0}} right)) then the tangent plane should nearly approximate the function at that point. Because of this we define the linear approximation to be,

Sketchode 2 0 1 sezonas
  • Fixes a bug that caused rendering artefacts to appear when you zoomed in or out on certain Artboards.
  • Fixes a crash that would sometimes occur when you opened the Insert Window by pressing c on your keyboard.
  • Fixes a bug that meant changes you made to Hex and RGBA values did not always save when you created or edited Color Variables.
  • Fixes a crash that could occur in macOS Big Sur if there were expanded groups in your document's Layer List.
  • Fixes a bug that stopped the Insert Window from refreshing after you edited any properties for Styles, Symbols, or Color Variables.
  • Fixes a bug that caused the main document window to disappear if you made it full-screen after opening the Insert Window.
  • Fixes a bug that could cause some images to appear with inverted colors.
  • Fixes a bug that made the Return to Instance button disappear after you opened the Components View.
  • Fixes a crash that could occur if you were working with some greyscale images.
  • Fixes a crash that could occur if you duplicated a Color Variable in the Components View.
  • Fixes a bug where some single-letter shortcuts would not work for certain macOS keyboard input languages.
  • Fixes a bug that caused colors in text layers to change if you used Sketch with some external displays.
Show Mobile NoticeShow All NotesHide All Notes
You appear to be on a device with a 'narrow' screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.

Section 3-1 : Tangent Planes and Linear Approximations

Earlier we saw how the two partial derivatives ({f_x}) and ({f_y}) can be thought of as the slopes of traces. We want to extend this idea out a little in this section. The graph of a function (z = fleft( {x,y} right)) is a surface in ({mathbb{R}^3})(three dimensional space) and so we can now start thinking of the plane that is 'tangent' to the surface as a point. Game pokemon di laptop.

Let's start out with a point (left( {{x_0},{y_0}} right)) and let's let ({C_1}) represent the trace to (fleft( {x,y} right)) for the plane (y = {y_0}) (i.e. allowing (x) to vary with (y) held fixed) and we'll let ({C_2}) represent the trace to (fleft( {x,y} right)) for the plane (x = {x_0}) (i.e. allowing (y) to vary with (x) held fixed). Now, we know that ({f_x}left( {{x_0},{y_0}} right)) is the slope of the tangent line to the trace ({C_1}) and ({f_y}left( {{x_0},{y_0}} right)) is the slope of the tangent line to the trace ({C_2}). So, let ({L_1}) be the tangent line to the trace ({C_1}) and let ({L_2}) be the tangent line to the trace ({C_2}).

The tangent plane will then be the plane that contains the two lines ({L_1}) and ({L_2}). Geometrically this plane will serve the same purpose that a tangent line did in Calculus I. A tangent line to a curve was a line that just touched the curve at that point and was 'parallel' to the curve at the point in question. Well tangent planes to a surface are planes that just touch the surface at the point and are 'parallel' to the surface at the point. Note that this gives us a point that is on the plane. Since the tangent plane and the surface touch at (left( {{x_0},{y_0}} right)) the following point will be on both the surface and the plane.

[left( {{x_0},{y_0},{z_0}} right) = left( {{x_0},{y_0},fleft( {{x_0},{y_0}} right)} right)]

What we need to do now is determine the equation of the tangent plane. We know that the general equation of a plane is given by,

[aleft( {x - {x_0}} right) + bleft( {y - {y_0}} right) + cleft( {z - {z_0}} right) = 0]

where (left( {{x_0},{y_0},{z_0}} right)) is a point that is on the plane, which we have. Let's rewrite this a little. We'll move the (x) terms and (y) terms to the other side and divide both sides by (c). Doing this gives,

[z - {z_0} = - frac{a}{c}left( {x - {x_0}} right) - frac{b}{c}left( {y - {y_0}} right)]

Now, let's rename the constants to simplify up the notation a little. Let's rename them as follows,

[A = - frac{a}{c}hspace{0.25in}B = - frac{b}{c}]

With this renaming the equation of the tangent plane becomes,

[z - {z_0} = Aleft( {x - {x_0}} right) + Bleft( {y - {y_0}} right)]

and we need to determine values for (A) and (B).

Let's first think about what happens if we hold (y) fixed, i.e. if we assume that (y = {y_0}). In this case the equation of the tangent plane becomes,

[z - {z_0} = Aleft( {x - {x_0}} right)]

This is the equation of a line and this line must be tangent to the surface at (left( {{x_0},{y_0}} right)) (since it's part of the tangent plane). In addition, this line assumes that (y = {y_0}) (i.e. fixed) and (A) is the slope of this line. But if we think about it this is exactly what the tangent to ({C_1}) is, a line tangent to the surface at (left( {{x_0},{y_0}} right)) assuming that (y = {y_0}). In other words,

[z - {z_0} = Aleft( {x - {x_0}} right)]

is the equation for ({L_1}) and we know that the slope of ({L_1}) is given by ({f_x}left( {{x_0},{y_0}} right)). Therefore, we have the following,

[A = {f_x}left( {{x_0},{y_0}} right)]

If we hold (x) fixed at (x = {x_0}) the equation of the tangent plane becomes,

[z - {z_0} = Bleft( {y - {y_0}} right)]

However, by a similar argument to the one above we can see that this is nothing more than the equation for ({L_2}) and that it's slope is (B) or ({f_y}left( {{x_0},{y_0}} right)). So,

[B = {f_y}left( {{x_0},{y_0}} right)]

The equation of the tangent plane to the surface given by (z = fleft( {x,y} right)) at (left( {{x_0},{y_0}} right)) is then,

[z - {z_0} = {f_x}left( {{x_0},{y_0}} right)left( {x - {x_0}} right) + {f_y}left( {{x_0},{y_0}} right)left( {y - {y_0}} right)]

Also, if we use the fact that ({z_0} = fleft( {{x_0},{y_0}} right)) we can rewrite the equation of the tangent plane as,

[begin{align*}z - fleft( {{x_0},{y_0}} right) & = {f_x}left( {{x_0},{y_0}} right)left( {x - {x_0}} right) + {f_y}left( {{x_0},{y_0}} right)left( {y - {y_0}} right) z & = fleft( {{x_0},{y_0}} right) + {f_x}left( {{x_0},{y_0}} right)left( {x - {x_0}} right) + {f_y}left( {{x_0},{y_0}} right)left( {y - {y_0}} right)end{align*}]

We will see an easier derivation of this formula (actually a more general formula) in the next section so if you didn't quite follow this argument hold off until then to see a better derivation.

Example 1

Sketchode 2 0 100000

Find the equation of the tangent plane to (z = ln left( {2x + y} right)) at (left( { - 1,3} right)). Show Solution

There really isn't too much to do here other than taking a couple of derivatives and doing some quick evaluations. Icarefone 5 4 0 8 x 2. Can macbook pro 2011 run catalina.

[begin{align*}fleft( {x,y} right) & = ln left( {2x + y} right)hspace{0.25in}& {z_0}& = fleft( { - 1,3} right) = ln left( 1 right) = 0 {f_x}left( {x,y} right) & = frac{2}{{2x + y}}hspace{0.25in} &{f_x}left( { - 1,3} right) & = 2 {f_y}left( {x,y} right) & = frac{1}{{2x + y}}hspace{0.25in} & {f_y}left( { - 1,3} right) & = 1end{align*}]

The equation of the plane is then,

[begin{align*}z - 0 & = 2left( {x + 1} right) + left( 1 right)left( {y - 3} right) z & = 2x + y - 1end{align*}]

One nice use of tangent planes is they give us a way to approximate a surface near a point. As long as we are near to the point (left( {{x_0},{y_0}} right)) then the tangent plane should nearly approximate the function at that point. Because of this we define the linear approximation to be,

[Lleft( {x,y} right) = fleft( {{x_0},{y_0}} right) + {f_x}left( {{x_0},{y_0}} right)left( {x - {x_0}} right) + {f_y}left( {{x_0},{y_0}} right)left( {y - {y_0}} right)]

Sketchode 2 0 18

and as long as we are 'near' (left( {{x_0},{y_0}} right)) then we should have that,

[fleft( {x,y} right) approx Lleft( {x,y} right) = fleft( {{x_0},{y_0}} right) + {f_x}left( {{x_0},{y_0}} right)left( {x - {x_0}} right) + {f_y}left( {{x_0},{y_0}} right)left( {y - {y_0}} right)] Example 2 Find the linear approximation to (z = 3 + frac{{{x^2}}}{{16}} + frac{{{y^2}}}{9}) at (left( { - 4,3} right)).

Sketchode 2 0 15

Show Solution

So, we're really asking for the tangent plane so let's find that.

[begin{align*}fleft( {x,y} right) & = 3 + frac{{{x^2}}}{{16}} + frac{{{y^2}}}{9}hspace{0.25in} & fleft( { - 4,3} right) & = 3 + 1 + 1 = 5 {f_x}left( {x,y} right) & = frac{x}{8}hspace{0.25in} & {f_x}left( { - 4,3} right) & = - frac{1}{2} {f_y}left( {x,y} right) & = frac{{2y}}{9}hspace{0.25in} & {f_y}left( { - 4,3} right) & = frac{2}{3}end{align*}]

The tangent plane, or linear approximation, is then,

[Lleft( {x,y} right) = 5 - frac{1}{2}left( {x + 4} right) + frac{2}{3}left( {y - 3} right)]

Sketchode 2 0 1 Sezonas

For reference purposes here is a sketch of the surface and the tangent plane/linear approximation.





broken image